ISSN 1600-5368

Chloridocyclohexyl[(1,2,5,6-η)-cycloocta-1,5-diene]platinum(II)

Kwang Ha

School of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea Correspondence e-mail: hakwang@chonnam.ac.kr

Received 25 November 2009; accepted 26 November 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.014 Å; R factor = 0.034; wR factor = 0.083; data-to-parameter ratio = 24.0.

In the title complex, $[Pt(C_6H_{11})Cl(C_8H_{12})]$, the Pt^{II} ion lies in a distorted square-planar environment defined by the Cl and cyclohexyl C atoms and the mid-points of the two π -coordinated double bonds of cycloocta-1,5-diene. As a result of the different *trans* influences of the Cl atom and the cyclohexyl group, the Pt-C bonds *trans* to the cyclohexyl group are longer than those *trans* to the Cl atom.

Related literature

For the crystal structure of $[(cod)PtCl_2]$ (cod = cycloocta-1,5diene), see: Goel *et al.* (1982); Syed *et al.* (1984). For the crystal structures of $[(cod)Pt(CH_3)L]$ (L = OH, CH₃ or Cl), see: Klein *et al.* (1999).

Experimental

Crystal data [Pt(C₆H₁₁)Cl(C₈H₁₂)]

 $M_r = 421.86$

Monoclinic, $P2_1/n$ a = 10.6505 (5) Å b = 12.3514 (6) Å c = 11.1609 (6) Å $\beta = 105.175$ (1)° V = 1417.01 (12) Å³

Data collection

Bruker SMART 1000 CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{min} = 0.122, T_{max} = 0.221$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.034 & 145 \text{ parameters} \\ wR(F^2) &= 0.083 & H\text{-atom parameters constrained} \\ S &= 1.12 & \Delta\rho_{\text{max}} = 1.12 \text{ e } \text{\AA}^{-3} \\ 3481 \text{ reflections} & \Delta\rho_{\text{min}} = -1.79 \text{ e } \text{\AA}^{-3} \end{split}$$

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

This work was supported by a Korea Research Foundation grant funded by the Korean Government (MOEHRD) (KRF-2007–412-J02001).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2696).

References

Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Goel, A. B., Goel, S. & van der Veer, D. (1982). Inorg. Chim. Acta, 65, L205–L206.

Klein, A., Klinkhammer, K.-W. & Scheiring, T. (1999). J. Organomet. Chem. 592, 128–135.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Syed, A., Stevens, E. D. & Cruz, S. G. (1984). Inorg. Chem. 23, 3673-3674.

Mo $K\alpha$ radiation

 $0.20 \times 0.16 \times 0.15~\text{mm}$

10108 measured reflections

3481 independent reflections 2343 reflections with $I > 2\sigma(I)$

 $\mu = 10.06 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.050$

Z = 4

supplementary materials

Acta Cryst. (2009). E65, m1707 [doi:10.1107/S1600536809050910]

Chloridocyclohexyl[(1,2,5,6-1)-cycloocta-1,5-diene]platinum(II)

K. Ha

Comment

In the title complex, $[Pt(C_6H_{11})Cl(C_8H_{12})]$, the central Pt^{II} ion lies in a distorted square-planar environment defined by the Cl and cyclohexyl C atoms and the two mid-points (M1, M2) of the π -coordinated double bonds of cycloocta-1,5-diene (cod) ligand (M1 and M2 denote the mid-points of the olefinic bonds C1—C2 and C5—C6, respectively) (Fig. 1 and Fig. 2). The Pt, Cl, C9 atoms and the mid-points lie in a coordination plane with the largest deviation of 0.021 Å (C9) from the least-squares plane, and with bond angles in the range of 85.2°–92.2°. Because of the different *trans* influences of the Cl atom and the cyclohexyl group, the Pt—C bonds *trans* to C9 of the cyclohexyl group are on average 0.215 Å longer than those *trans* to the Cl atom (Pt1—C1/C2 = 2.316 (7) and 2.337 (8) Å, Pt1—C5/C6 = 2.111 (8) and 2.112 (8) Å). The distances between the Pt atom and the mid-points are 2.228 Å (M1) and 1.992 Å (M2). The cod ligand coordinates to the Pt atom in the twist-boat conformation with the coordinated double-bond lengths of 1.339 (11) and 1.402 (12) Å, and the cod ring angles lie in the range of 113.0 (8)°–127.1 (8)°. The σ -bonded cyclohexyl ring is in the chair conformation with the ring angles of 109.9 (8)°.

Experimental

To a suspension of $[(cod)PtCl_2]$ (0.5015 g, 1.34 mmol) in ether (30 ml) was added cyclohexylmagnesium chloride (2.0 *M* solution in ether, 4.1 ml, 8.04 mmol) and stirred for 24 h at -5 °C. After methanolysis with 1 ml MeOH, the resulting mixture was diluted with ether (20 ml), and then filtered directly through a plug of Al₂O₃ (3 cm *x* 2 cm) and eluted with ether (80 ml). The solvent was removed under vacuum and the residue was dried, to give a white powder (0.3655 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an ethyl acetate solution.

Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.98 (CH) or 0.97 (CH₂) Å and U_{iso} (H) = 1.2 U_{eq} (C)].

Figures

Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for non-H atoms.

Fig. 2. View of the unit-cell contents of the title compound.

F(000) = 808 $D_{\rm x} = 1.977 \text{ Mg m}^{-3}$

 $\theta = 2.4-27.8^{\circ}$ $\mu = 10.06 \text{ mm}^{-1}$ T = 296 KBlock, colorless $0.20 \times 0.16 \times 0.15 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 3669 reflections

Chloridocyclohexyl[(1,2,5,6-η)-cycloocta-1,5-diene]platinum(II)

Crystal data
[Pt(C ₆ H ₁₁)Cl(C ₈ H ₁₂)]
$M_r = 421.86$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
<i>a</i> = 10.6505 (5) Å
<i>b</i> = 12.3514 (6) Å
c = 11.1609 (6) Å
$\beta = 105.1750 \ (10)^{\circ}$
$V = 1417.01 (12) \text{ Å}^3$
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer	3481 independent reflections
Radiation source: fine-focus sealed tube	2343 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.050$
ϕ and ω scans	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000)	$h = -14 \rightarrow 14$
$T_{\min} = 0.122, \ T_{\max} = 0.221$	$k = -8 \rightarrow 16$
10108 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.083$	H-atom parameters constrained
<i>S</i> = 1.12	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0112P)^{2} + 4.7457P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3481 reflections	$(\Delta/\sigma)_{max} < 0.001$
145 parameters	$\Delta \rho_{max} = 1.12 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -1.79 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y Pt1 0.03388 (11) 0.23435 (3) 0.38659 (3) 0.59178 (3) Cl1 0.0531 (2) 0.2747 (2) 0.5501 (2) 0.0491 (6) C1 0.1992 (9) 0.4337 (7) 0.7812(7) 0.043(2)H10.1372 0.3870 0.8078 0.051* C2 0.7019 (8) 0.1440 (8) 0.5121 (8) 0.044(2)H2 0.0487 0.5132 0.6801 0.052* C3 0.2067 (9) 0.6204 (8) 0.6984 (8) 0.053(2)H3A 0.2625 0.6364 0.78020.064* H3B 0.1396 0.6755 0.6785 0.064* C4 0.2864 (10) 0.6255 (8) 0.6048 (9) 0.063(3)0.2299 H4A 0.6477 0.5256 0.076* H4B 0.3522 0.6812 0.6308 0.076* C5 0.3523 (8) 0.5229(7) 0.5861 (8) 0.043(2)Н5 0.3865 0.5243 0.5128 0.052* C6 0.4195 (8) 0.4513 (8) 0.6782 (9) 0.052 (3) H6 0.4921 0.4135 0.6578 0.062* C7 0.4719 (9) 0.4382 (10) 0.8158 (9) 0.068 (3) H7A 0.5169 0.4351 0.082* 0.8607 H7B 0.4522 0.5489 0.8307 0.082* C8 0.3306 (11) 0.4376 (9) 0.8696 (8) 0.065 (3) H8A 0.3276 0.4870 0.9364 0.078* H8B 0.3510 0.3663 0.9058 0.078* C9 0.3060 (8) 0.3085 (8) 0.4561 (8) 0.044 (2) H9 0.3882 0.3438 0.4554 0.053* C10 0.2166 (11) 0.3210 (9) 0.3290 (8) 0.064 (3) H10A 0.2023 0.3974 0.3099 0.076* H10B 0.1332 0.2883 0.3267 0.076* C11 0.2310 (10) 0.2741 (13) 0.2672 (11) 0.087(4) H11A 0.2116 0.2718 0.1504 0.105* H11B 0.3517 0.3060 0.2262 0.105* C12 0.3075 (11) 0.1516 (9) 0.2608 (10) 0.071 (3) H12A 0.3513 0.1227 0.2017 0.085* H12B 0.2282 0.1105 0.2530 0.085*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C13	0.3945 (10)	0.1387 (9)	0.3909 (9)	0.067 (3)
H13A	0.4785	0.1713	0.3952	0.080*
H13B	0.4083	0.0622	0.4096	0.080*
C14	0.3359 (9)	0.1916 (8)	0.4883 (8)	0.051 (2)
H14A	0.2567	0.1540	0.4911	0.061*
H14B	0.3968	0.1863	0.5696	0.061*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Pt1	0.03384 (17)	0.03547 (19)	0.03338 (16)	-0.00364 (17)	0.01065 (11)	-0.00381 (18)
Cl1	0.0403 (12)	0.0527 (15)	0.0538 (13)	-0.0132 (10)	0.0116 (10)	-0.0063 (12)
C1	0.070 (6)	0.037 (5)	0.028 (4)	0.006 (5)	0.025 (4)	-0.004 (4)
C2	0.042 (5)	0.048 (6)	0.043 (5)	0.007 (4)	0.015 (4)	-0.006 (5)
C3	0.056 (6)	0.054 (7)	0.048 (5)	0.012 (5)	0.010 (4)	0.002 (5)
C4	0.075 (7)	0.046 (7)	0.072 (7)	-0.006 (5)	0.026 (6)	-0.009 (6)
C5	0.049 (5)	0.044 (6)	0.049 (5)	-0.020 (4)	0.031 (4)	-0.019 (5)
C6	0.030 (5)	0.053 (6)	0.068 (6)	-0.015 (4)	0.005 (4)	-0.018 (6)
C7	0.062 (7)	0.067 (8)	0.058 (6)	0.000 (6)	-0.014 (5)	-0.007 (6)
C8	0.096 (9)	0.055 (7)	0.035 (5)	0.017 (6)	0.000 (5)	-0.006 (5)
C9	0.049 (5)	0.047 (6)	0.042 (5)	-0.008 (4)	0.022 (4)	-0.018 (4)
C10	0.096 (8)	0.056 (7)	0.046 (6)	0.018 (6)	0.033 (6)	0.007 (5)
C11	0.121 (11)	0.108 (12)	0.047 (6)	0.015 (9)	0.046 (7)	-0.009 (7)
C12	0.084 (8)	0.061 (8)	0.080 (8)	0.000 (6)	0.042 (7)	-0.024 (7)
C13	0.072 (7)	0.064 (8)	0.072 (7)	0.010 (6)	0.032 (6)	-0.012 (6)
C14	0.056 (6)	0.045 (6)	0.057 (6)	0.008 (5)	0.026 (5)	-0.013 (5)

Geometric parameters (Å, °)

Pt1—C9	2.100 (8)	С7—Н7А	0.9700
Pt1—C5	2.111 (8)	С7—Н7В	0.9700
Pt1—C6	2.112 (8)	C8—H8A	0.9700
Pt1—C1	2.316 (7)	C8—H8B	0.9700
Pt1—Cl1	2.320 (2)	C9—C10	1.495 (12)
Pt1—C2	2.337 (8)	C9—C14	1.502 (12)
C1—C2	1.339 (11)	С9—Н9	0.9800
C1—C8	1.487 (13)	C10—C11	1.538 (12)
C1—H1	0.9800	C10—H10A	0.9700
C2—C3	1.500 (13)	C10—H10B	0.9700
С2—Н2	0.9800	C11—C12	1.488 (15)
C3—C4	1.510 (12)	C11—H11A	0.9700
С3—НЗА	0.9700	C11—H11B	0.9700
С3—Н3В	0.9700	C12—C13	1.513 (14)
C4—C5	1.490 (13)	C12—H12A	0.9700
C4—H4A	0.9700	C12—H12B	0.9700
C4—H4B	0.9700	C13—C14	1.534 (11)
C5—C6	1.402 (12)	C13—H13A	0.9700
С5—Н5	0.9800	С13—Н13В	0.9700
C6—C7	1.517 (12)	C14—H14A	0.9700

С6—Н6	0.9800	C14—H14B	0.9700
С7—С8	1.487 (14)		
C9—Pt1—C5	90.8 (3)	Pt1-C6-H6	114.4
C9—Pt1—C6	91.8 (4)	C8—C7—C6	116.8 (8)
C5—Pt1—C6	38.8 (3)	С8—С7—Н7А	108.1
C9—Pt1—C1	161.8 (3)	С6—С7—Н7А	108.1
C5—Pt1—C1	93.8 (3)	С8—С7—Н7В	108.1
C6—Pt1—C1	80.9 (4)	С6—С7—Н7В	108.1
C9—Pt1—Cl1	91.3 (2)	H7A—C7—H7B	107.3
C5—Pt1—Cl1	159.9 (3)	C7—C8—C1	115.6 (8)
C6—Pt1—Cl1	160.9 (3)	С7—С8—Н8А	108.4
C1—Pt1—Cl1	90.5 (2)	С1—С8—Н8А	108.4
C9—Pt1—C2	164.0 (3)	С7—С8—Н8В	108.4
C5—Pt1—C2	79.5 (3)	C1—C8—H8B	108.4
C6—Pt1—C2	88.4 (4)	H8A—C8—H8B	107.4
C1—Pt1—C2	33.5 (3)	C10—C9—C14	111.7 (8)
Cl1—Pt1—C2	93.7 (2)	C10—C9—Pt1	112.0 (6)
C2—C1—C8	126.1 (9)	C14—C9—Pt1	111.3 (6)
C2—C1—Pt1	74.1 (5)	С10—С9—Н9	107.2
C8—C1—Pt1	105.4 (6)	С14—С9—Н9	107.2
C2—C1—H1	114.3	Pt1—C9—H9	107.2
C8—C1—H1	114.3	C9—C10—C11	110.9 (9)
Pt1-C1-H1	114.3	C9—C10—H10A	109.5
C1 - C2 - C3	122.7 (8)	C11—C10—H10A	109.5
C1 - C2 - Pt1	72.4 (5)	C9—C10—H10B	109.5
$C_3 = C_2 = Pt_1$	109 3 (6)	C11—C10—H10B	109.5
C1—C2—H2	114.9	H10A—C10—H10B	108.0
C3—C2—H2	114.9	C12-C11-C10	111 9 (9)
Pt1-C2-H2	114.9	C12—C11—H11A	109.2
$C_2 - C_3 - C_4$	113.0 (8)	C10-C11-H11A	109.2
C2—C3—H3A	109.0	C12—C11—H11B	109.2
C4—C3—H3A	109.0	C10—C11—H11B	109.2
C2—C3—H3B	109.0	H11A—C11—H11B	107.9
C4—C3—H3B	109.0	$C_{11} - C_{12} - C_{13}$	111.5(10)
$H_{3}A = C_{3} = H_{3}B$	107.8	C11 - C12 - H12A	109.3
$C_{5} - C_{4} - C_{3}$	115 5 (9)	C13 - C12 - H12A	109.3
$C_5 - C_4 - H_4 A$	108.4	C11 - C12 - H12R	109.3
$C_3 - C_4 - H_4 A$	108.4	C13-C12-H12B	109.3
C_{5} C_{4} H_{4B}	108.4	H12A - C12 - H12B	109.9
C_3 C_4 H_4B	108.4	C12 - C13 - C14	112.0 (8)
$H_{4} - C_{4} - H_{4}B$	107.5	$C_{12} = C_{13} = H_{13}$	109.2
C_{6}	127.1.(8)	C12 = C13 = H13A	109.2
C6-C5-Pt1	70 7 (5)	C12—C13—H13B	109.2
C4-C5-Pt1	111.6 (6)	C14_C13_H13B	109.2
C6—C5—H5	113.2	H13A_C13_H13B	107.9
C4—C5—H5	113.2	C9-C14-C13	109.9 (8)
Pt1-C5-H5	113.2	C9—C14—H14A	109.7
C_{5}	122 9 (9)	C13-C14-H14A	109.7
C5-C6-Pt1	70.6 (5)	C9-C14-H14B	109.7
	, (.)	C, CI, IIIID	- 0 / . /

supplementary materials

C7—C6—Pt1	112.7 (6)	C13—C14—H14B	109.7
С5—С6—Н6	114.4	H14A—C14—H14B	108.2
С7—С6—Н6	114.4		
C9—Pt1—C1—C2	168.5 (9)	C9—Pt1—C6—C5	89.0 (6)
C5—Pt1—C1—C2	64.3 (6)	C1—Pt1—C6—C5	-107.8 (5)
C6—Pt1—C1—C2	101.0 (6)	Cl1—Pt1—C6—C5	-171.9 (6)
Cl1—Pt1—C1—C2	-96.1 (6)	C2—Pt1—C6—C5	-75.0 (5)
C9—Pt1—C1—C8	44.6 (14)	C9—Pt1—C6—C7	-152.5 (8)
C5—Pt1—C1—C8	-59.5 (7)	C5—Pt1—C6—C7	118.5 (10)
C6—Pt1—C1—C8	-22.8 (7)	C1—Pt1—C6—C7	10.6 (7)
Cl1—Pt1—C1—C8	140.1 (6)	Cl1—Pt1—C6—C7	-53.4 (13)
C2-Pt1-C1-C8	-123.8 (9)	C2-Pt1-C6-C7	43.4 (8)
C8—C1—C2—C3	-4.3 (14)	C5—C6—C7—C8	84.8 (12)
Pt1-C1-C2-C3	-102.0 (8)	Pt1C6C7C8	4.0 (12)
C8-C1-C2-Pt1	97.7 (9)	C6—C7—C8—C1	-26.2 (14)
C9-Pt1-C2-C1	-166.9 (10)	C2—C1—C8—C7	-49.3 (13)
C5-Pt1-C2-C1	-113.8 (6)	Pt1-C1-C8-C7	32.0 (10)
C6—Pt1—C2—C1	-75.9 (6)	C5-Pt1-C9-C10	-97.5 (7)
Cl1-Pt1-C2-C1	85.2 (6)	C6—Pt1—C9—C10	-136.2 (7)
C9—Pt1—C2—C3	-47.6 (15)	C1—Pt1—C9—C10	157.9 (9)
C5—Pt1—C2—C3	5.4 (6)	Cl1—Pt1—C9—C10	62.6 (7)
C6—Pt1—C2—C3	43.4 (6)	C2-Pt1-C9-C10	-45.7 (15)
C1—Pt1—C2—C3	119.3 (9)	C5-Pt1-C9-C14	136.7 (7)
Cl1-Pt1-C2-C3	-155.5 (6)	C6—Pt1—C9—C14	98.0 (7)
C1—C2—C3—C4	93.5 (10)	C1—Pt1—C9—C14	32.1 (14)
Pt1-C2-C3-C4	12.5 (9)	Cl1—Pt1—C9—C14	-63.2 (6)
C2—C3—C4—C5	-33.3 (12)	C2-Pt1-C9-C14	-171.5 (10)
C3—C4—C5—C6	-43.5 (13)	C14—C9—C10—C11	-56.8 (11)
C3-C4-C5-Pt1	38.1 (10)	Pt1-C9-C10-C11	177.6 (7)
C9—Pt1—C5—C6	-91.9 (6)	C9—C10—C11—C12	54.8 (14)
C1—Pt1—C5—C6	70.4 (6)	C10-C11-C12-C13	-53.3 (14)
Cl1—Pt1—C5—C6	172.3 (6)	C11—C12—C13—C14	54.1 (13)
C2-Pt1-C5-C6	100.8 (6)	C10—C9—C14—C13	56.9 (10)
C9—Pt1—C5—C4	144.8 (7)	Pt1-C9-C14-C13	-177.1 (6)
C6-Pt1-C5-C4	-123.2 (9)	C12—C13—C14—C9	-55.3 (12)
C1-Pt1-C5-C4	-52.8 (7)	C1—C2—C5—C6	-7.2 (7)
Cl1—Pt1—C5—C4	49.1 (11)	C3—C4—C7—C8	22.4 (8)
C2-Pt1-C5-C4	-22.5 (7)	C3—C2—C1—C8	-4.3 (14)
C4—C5—C6—C7	-2.0 (14)	C4—C5—C6—C7	-2.0 (14)
Pt1-C5-C6-C7	-105.0 (9)	C2—C3—C4—C5	-33.3 (12)
C4C5C6Pt1	103.0 (9)	C6—C7—C8—C1	-26.2 (14)

Fig. 2

